

COMPUTER ORGANIZATION AND ARCHITECTURE

LABORATORY MANUAL AY2023 E2_SEM2 (BATCH-R19)
[image:][image:]

Created by

 E SUSMITHA

IIIT, RK Valley, RGUKT-AP
[image:][image:]

IIIT RK Valley, RGUKT-AP 516330	COA Laboratory

	Coursecode
	CourseName
	CourseCategory
	L-T-P
	Credits

	23CS2181
	COMPUTER ORGANIZATION AND ARCHITECTURE Lab
	PCC
	0-0-3
	1.5

Course Learning Objective
1. To expose the students to the various key aspects of Computer Organization & Architecture.
2. To aquaint with various registers in the CPU and understand about the assembly language programming.
List of Experiments:
Lab No 1.a) Verification of Logic gates
b) Assembly language program to find largest number in an Array.
Lab No 2. a) Verification of Full-Adder and Full-Subtractor
b) Assembly language program to find smallest number in an array.
Lab No 3. a)Verification of Ripple Carry Adder and Carry-look-ahead adder.
b) Assembly language program for adding to two arrays
Lab No 4. a) Combinational Multipliers
b) Assembly language program to separate even and odd numbers from an array.
Lab No 5. a) Booth's Multiplier
b) Assembly language rogram to find prime numbers between a given range
Lab No 6. a) Wallace Tree Adder
b) Assembly language program to find factorial of the given number.
Lab No 7. a) Arithmetic Logic Unit
b) Assembly language program to find LCM.
Lab No 8. a) Verification of Registers and Counters
b) Assembly language program to find GCD.
Lab No 9. a) Memory Design
b) Assembly language program to search an element using linear search.
Lab No 10. a) Direct Mapped cache Design
b) Assembly language program to search an element using binary search.
Lab No 11. a) Associative cache Design
b) Assembly language program to sort numbers using bubble sort
Course Outcomes
At the end of the course, the student will be able to
CO 1 Understand the basic logic gates
CO 2 Understand the full adder and full subtractor
CO 3 Ripple Carry Adder examine the behavior of the working module to understand how the carry ripples through the adder stages to design a ripple carry adder using full adders to mimic the behavior of the workingmodule .
Carry Lookahead Adder understand the behaviour of carry lookahead adder understand the concept of reducing computation time with respect of ripple carry adder by using carry generate and propagate functions
CO4 Combinational Multipliers
 understand the behaviour of combinational multiplier . understand the scheme implemented for the multiplication. it can be designed by unrolling the multiplier loop instead of handling the carry out of partial product summation bit,the carry out can be sent to the next bit of the next step this scheme of handling the carry is called carry save addition
CO 5Booth’s Multiplier
Understand the behaviour of Booth's multiplication. Design Booth's multiplier with a controller and a datapath. This will also help in the learning of control unit design as a finite state machine Understand the advantages of Booth's multiplier
It can handle signed integers in 2's complement notion
It decreases the number of addition and subtraction
It requires less hardware than combinational multiplier
It is faster than straightforward sequential multiplier
CO 6 Wallace Tree Adder
Understand the behaviour of wallace tree.
understand the concept of reducing gate delay by using tree of adders instead of using cascaded full adders
CO 7 Arithmetic Logic Unit
Understand the behaviourof arithmetic logic unit.
Design an arithmetic logic unit for given parameter.
CO8 Registers
to understand the shifting of data to examine the behavior of different modes of data input and data output(serial-in serial-out, serial-in parallel-out, parallel-in serial out,parallel-in parallel-out) to make use of shift register in data transfer developing skills in the designing and testing of sequential logic circuits developing skills in analysing timing signals.
Counters
understand the concept of counting upto certain limiting value and returning back to the start state from final state understand the generation of timing sequences to control operations in a digital system develop skills in the design and testing of counters for given timing sequences develop skills in generating timing signals .
CO 9 Memory Design
Understand the behavior of memory.
Design memory for given parameter.
CO 10 Direct Mapped Cache Design
Understand the behavior of direct mapped cache from working module
Design a direct mapped cache for given parameters.
CO 11 Associative Cache Design
Understand the behavior of associative cache.
Designs a associative cache for given parameters.
Understand and develop Assembly Language Programs

Assessment Method

	AssessmentTool
	Experiments
	Report/Viva-Voce/ Quiz/MCQ/Labproject
	Total

	Weightage(%)
	25%
	15%
	40%

	EndSemesterExaminationweightage(%)
	60%

 INDEX

	LAB
	Name of LAB
	Page No‟s
	

	No
	
	
	

	1
	1.a) Verification of Logic gates
b) Assembly language program to find largest number in an Array
	1 – 5
	

	
	
	
	

	
	
	
	

	2
	a) Verification of Full-Adder and Full-Subtractor
b) Assembly language program to find smallest number in an array
	6 – 15
	

	
	
	
	

	
	
	
	

	
	
	
	

	3
	a)Verification of Ripple Carry Adder and Carry-look-ahead adder.
b) Assembly language program for adding to two arrays
	16 – 24
	

	
	
	
	

	4
	a) Combinational Multipliers
b) Assembly language program to separate even and odd numbers from an array.
	25 – 32
	

	
	
	
	

	
	
	
	

	5
	a) Booth's Multiplier
b) Assembly language rogram to find prime numbers between a given range

	33 – 39
	

	
	
	
	

	
	
	
	

	6
	a) Wallace Tree Adder
b) Assembly language program to find factorial of the given number.
	40 – 43
	

	
	
	
	

	
	
	
	

	7
	a) Arithmetic Logic Unit
b) Assembly language program to find LCM.

	44 – 46
	

	
	
	
	

	
	
	
	

	8
	a) Verification of Registers and Counters
b) Assembly language program to find GCD.

	47 – 49
	

	
	
	
	

	
	
	
	

	9
	a) Memory Design
b) Assembly language program to search an element using linear search
	50 – 52
	

	
	
	
	

	
	
	
	

	10

11
	a) Direct Mapped cache Design
b) Assembly language program to search an element using binary search

a) Associative cache Design
b) Assembly language program to sort numbers using bubble sort.

	53-57
58-60
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	Total Programs
	
	60
	

	
	
	
	
	

Prepared by
SUSMITHA E
Evaluation criteria: internal 40marks external 60 marks

List of the Instructors :

CH RATNA KUMARI
E SUSMITHA

5

EXPERIMENT: 1(a) LOGIC GATES
AIM: To study and verify the truth table of logic gates
THEORY:
The basic logic gates are the building blocks of more complex logic circuits. These logic gates perform the basic Boolean functions, such as AND, OR, NAND, NOR, Inversion, Exclusive-OR, Exclusive-NOR. Fig. below shows the circuit symbol, Boolean function, and truth. It is seen from the Fig that each gate has one or two binary inputs, A and B, and one binary output, C. The small circle on the output of the circuit symbols designates the logic complement. The AND, OR, NAND, and NOR gates can be extended to have more than two inputs. A gate can be extended to have multiple inputs if the binary operation it represents is commutative and associative.

These basic logic gates are implemented as small-scale integrated circuits(SSICs) or as part ofmorecomplexmediumscale(MSI)orverylarge-scale(VLSI)integratedcircuits.Digital IC gates are classified not only by their logic operation, but also the specific logic-circuit family to which they belong. Each logic family has its own basic electronic circuit upon which more complex digital circuits and functions are developed. The following logic families are the most frequently used.
TTL	Transistor-transistor logic
ECL	Emitter-coupled logic
MOS	Metal-oxidesemiconductor
CMOS	Complementarymetal-oxidesemiconductor

TTL and ECL are based upon bipolar transistors. TTL has a well established popularity among logic families. ECL is used only in systems requiring high-speed operation. MOS and CMOS, are based on field effect transistors. They are widely used in large scale integrated circuits because of their high component density and relatively low power consumption. CMOS logic consumes far less power than MOS logic. There are various commercial

integratedcircuitchipsavailable.TTLICsareusuallydistinguishedbynumerical designation as the 5400 and 7400 series.
PROCEDURE:
1. Checkthecomponentsfortheir working.
2. InserttheappropriateICintotheICbase.
3. Makeconnectionsasshowninthecircuitdiagram.
4. ProvidetheinputdataviatheinputswitchesandobservetheoutputonoutputLEDs

[image:]

EXPERIMENT: 1(b) Assembly language program to find largest number in an array.

AIM: Assembly language program to find largest number in an array.
 Registers used: A, H, L, C
1. LXI 2050 assigns 20 to H and 50 to L
2. MOV C, M copies content of memory (specified by HL register pair) to C (this is used as a counter)
3. DCR C decrements value of C by 1
4. INX H increases value of HL by 1. This is done to visit next memory location
5. MOV A, M copies content of memory (specified by HL register pair) to A
6. INX H increases value of HL by 1. This is done to visit next memory location
7. CMP M compares A and M by subtracting M from A. Carry flag and sign flag becomes set if A-M is negative
8. JNC 200D jumps program counter to 200D if carry flag = 0
9. MOV A, M copies content of memory (specified by HL register pair) to A
10. DCR C decrements value of C by 1
11. JNZ 2007 jumps program counter to 2007 if zero flag = 0
12. STA 3050 stores value of A at 3050 memory location
13. HLT stops executing the program and halts any further execution

Program:
	Memory Address
	Mnemonics
	Comment

	2000
	LXI H 2050
	H←20, L←50

	2003
	MOV C, M
	C←M

	2004
	DCR C
	C←C-01

	2005
	INX H
	HL←HL+0001

	2006
	MOV A, M
	A←M

	2007
	INX H
	HL←HL+0001

	2008
	CMP M
	A-M

	2009
	JNC 200D
	If Carry Flag=0, goto 200D

	200C
	MOV A, M
	A←M

	200D
	DCR C
	C←C-1

	200E
	JNZ 2007
	If Zero Flag=0, goto 2007

	2011
	STA 3050
	A→3050

	2014
	HLT
	

Example:
[image: IMG_256]

EXPERIMENT: 2(a)ADDERSANDSUBTRACTORS
AIM:To realize
i) HalfAdderandFullAdder
ii) HalfSubtractorandFullSubtractorbyusingBasicgatesandNANDgates
LEARNINGOBJECTIVE:
Torealizetheadderandsubtractorcircuitsusingbasicgatesanduniversal gates To realize full adder using two half adders
Torealizeafullsubtractor usingtwohalfsubtractors
THEORY:
Half-Adder: A combinational logic circuit that performs the addition of two data bits, A andB, is called a half-adder. Addition will result in two outputbits;one of which is the sumbit, S, and the other is the carry bit, C. The Boolean functions describing the half-adder are:
S=A⊕B	C =A B

Full-Adder: The half-adder does not take the carry bit from its previous stage into account. This carrybitfromitsprevious stage iscalledcarry-in bit. Acombinational logiccircuit that adds two data bits, A and B, and a carry-in bit, Cin , is called a full-adder. The Boolean functions describing the full-adder are:
S= (x ⊕y) ⊕Cin	C =xy +Cin(x⊕y)

Half Subtractor: Subtractinga single-bit binaryvalueBfromanother A(i.e. A -B) produces a difference bit D and a borrow out bit B-out. This operation is called half subtraction and the circuit to realize it is called a half subtractor. The Boolean functions describing the half- Subtractor are:
S=A⊕B	C =A’B

Full Subtractor: Subtractingtwo single-bit binaryvalues, B, Cinfroma single-bit value A produces a difference bit D and a borrow out Br bit. This is called full subtraction. The Boolean functions describing the full-subtracter are:
D= (x ⊕y) ⊕Cin	Br=A’B +A’(Cin)+B(Cin)

I. TOREALIZE HALFADDER

 (
Computer organization and architecture Laboratory
Manual
)

TRUTHTABLE
	INPUTS
	OUTPUTS

	A
	B
	S
	C

	0
	0
	0
	0

	0
	1
	1
	0

	1
	0
	1
	0

	1
	1
	0
	1

i) BasicGates

[image:]
II. (
INPUTS
OUTPUTS
A
B
Cin
S
C
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
1
1
0
0
1
1
1
1
1
1
)	FULLADDER TRUTH TABLE

BOOLEANEXPRESSIONS:

i) NANDGates
[image:]

BOOLEANEXPRESSIONS:
S=A⊕B⊕C
C=AB+ BCin +A Cin

[image:]

ii)NANDGATES
[image:]

III. HALFSUBTRACTOR
 (
INPUTS
OUTPUTS
A
B
D
Br
0
0
0
0
0
1
1
1
1
0
1
0
1
1
0
0
)TRUTH TABLE	BOOLEANEXPRESSIONS: D = A ⊕B
Br =A B

i) BASICGATES	ii) NANDGates
[image:]

IV. FULL SUBTRACTOR
 (
INPUTS
OUTPUTS
A
B
Cin
D
Br
0
0
0
0
0
0
0
1
1
1
0
1
0
1
1
0
1
1
0
1
1
0
0
1
0
1
0
1
0
0
1
1
0
0
0
1
1
1
1
1
)TRUTH TABLE	BOOLEANEXPRESSIONS: D= A ⊕B ⊕C
Br= AB +B Cin +ACin

i) BASICGATES
[image:]

ii) ToRealizetheFullsubtractorusingNANDGates only
[image:]
PROCEDURE:
· Checkthecomponentsfortheir working.
· InserttheappropriateICintotheICbase.
· Makeconnectionsasshowninthecircuitdiagram.
· VerifytheTruthTableandobservetheoutputs.
 (
Computer organization and architectureLaboratory
Manual
) (
10
)
· RESULT: The truth table of the above circuits is verified.
EXPERIMENT: 2(b) Assembly language program to find smallest number in an array

AIM: Assembly language program to find smallest number in an array
	MEMORY ADDRESS
	MNEMONICS
	COMMENTS

	0400
	MOV SI, 500
	SI <- 500

	0403
	MOV DI, 600
	DI <- 600

	0406
	MOV CL, [SI]
	CL <- [SI]

	0408
	MOV CH, 00
	CH <- 00

	040A
	INC SI
	SI <- SI+1

	040B
	MOV AL, [SI]
	AL <- [SI]

	040D
	DEC CX
	CX <- CX-1

	040E
	INC SI
	SI <- SI+1

	040F
	MOV BL, [SI]
	BL <- [SI]

	0411
	CMP AL, BL
	AL-BL

	0413
	JC 0417
	Jump if carry is 1

	0415
	MOV AL, BL
	AL <- BL

	0417
	LOOP 040E
	Jump if CX not equal to 0

	0419
	MOV [DI], AL
	[DI] <- AL

	041B
	HLT
	End of the program

Explanation –
1. MOV SI, 500 assigns 500 to SI
2. MOV DI, 600 assigns 600 to DI
3. MOV CL, [SI] moves the content of [SI] to CL register
4. MOV CH, 00 assign 00 to CH register
5. INC SI increase the value SI by 1
6. MOV AL, [SI] moves the content of [SI] to AL register
7. DEC CX decrease the content of CX register by 1
8. INC SI increase the value SI by 1
9. MOV BL, [SI] moves the content of [SI] to BL register
10. CMP AL, BL subtract the value of BL register from AL and it modify flag registers
11. JC 0417 jump to 0417 address if carry flag is set
12. MOV AL, BL moves the content of BL register to AL register
13. LOOP 040E runs loop till CX not equal to Zero and decrease the value of CX by 1
14. MOV [DI], AL moves the content of AL to [DI]
15. HLT stops the execution of program
Example:

[image: IMG_256]

Lab No 3. a)Verification of Ripple Carry Adder and Carry-look-ahead adder.

1 Objectives
Design ripple carry and carry lookahead (CLA) adders. Use VHDL CAD tools.
Use hierarchical design techniques.
Model and simulate combinational logic using VHDL.

2 Introduction

We will start by explaining the operation of one-bit full adder which will be the basis for construct- ing ripple carry and carry lookahead adders.

One-bit full adder

a	b
	

 (
Full

Adder
)cin	cout
	

s

Figure 1: One-bit full adder.

A one-bit full adder is a combinational circuit that forms the arithmetic sum of three bits. It consists of three inputs	and and two outputs and as illustrated in Figure 1. The truth table of the full adder is listed in Table 1. The gate implementation of 1-bit full adder is shown in Figure 2.

 (
50
)

 (
b
c
in
)a
s

cout

Figure 2: Gate implementation of full adder.

Table 1: Full adder truth table.

	
	0
	0
	0
	0
	0

	
	0
	0
	1
	0
	1

	
	0
	1
	0
	0
	1

	
	0
	1
	1
	1
	0

	
	1
	0
	0
	0
	1

	
	1
	0
	1
	1
	0

	
	1
	1
	0
	1
	0

	
	1
	1
	1
	1
	1

	
2.2
	
Ripple carry adder
	
	
	
	
	

A ripple carry adder is a digital circuit that produces the arithmetic sum of two binary numbers. It can be constructed with full adders connected in cascaded (see section 2.1), with the carry output from each full adder connected to the carry input of the next full adder in the chain. Figure 3 shows the interconnection of four full adder (FA) circuits to provide a 4-bit ripple carry adder. Notice from Figure 3 that the input is from the right side because the first cell traditionally represents the least significant bit (LSB). Bits and in the figure represent the least significant bits of the numbers to be added. The sum output is represented by the bits – .

Ripple carry adder delays
In the ripple carry adder, the output is known after the carry generated by the previous stage is produced. Thus, the sum of the most significant bit is only available after the carry signal has rippled through the adder from the least significant stage to the most significant stage. As a result, the final sum and carry bits will be valid after a considerable delay.
Table 2 shows the delays for several CMOS gates assuming all gates are equally loaded for sim- plicity. All delays are normalized relative to the delay of a simple inverter. The table also shows the corresponding gate areas normalized to a simple minimum-area inverter. Note from the table

 (
c
4
Full Adder
c
3
Full Adder
c
2
Full Adder
c
1
Full Adder
c
0
)a3	b3
[image:][image:]

[image:]	[image:]

[image:]s3

a2	b2
[image:][image:]

[image:]

[image:]s2

a1	b1
[image:][image:]

[image:]

[image:]s1

a0	b0
[image:][image:]

[image:]

[image:]s0

Figure 3: 4-bit full adder.

that multiple-input gates have to use a different circuit technique compared to simple 2-input gates.

Table 2: CMOS gate delays and areas normalized relative to an inverter.

	Gate
	Delay
	Area
	Comment

	Inverter
	1
	1
	Minimum delay
More area to produce delay equal to that of an inverter
More area to produce delay equal to that of an inverter
Composed of NAND followed by inverter Composed of NOR followed by inverter Built using inverters and NAND gates Uses saturated load ().
Uses	-input OR preceded by inverters (
).

	2-input NOR
	1
	3
	

	2-input NAND
	1
	3
	

	2-input AND
	2
	4
	

	2-input OR
	2
	4
	

	2-input XOR
	3
	11
	

	-input OR
	2
	
	

	-input AND
	3
	
	

Using Table 2 and the schematic of Figures 2 and 3, we can estimate the delays associated with the outputs of the ripple carry adder stages as indicated in Table 3. The delays are normalized relative to an inverter delay.
For an -bit ripple carry adder the sum and carry bits of the most significant bit (MSB) are obtained after a normalized delay of

	Sum
	delay
	(1)

	Carry
	delay
	(2)

For a 32-bit processor, the carry chain normalized delay would be 131. The ripple carry adder can get very slow when many bits need to be added. In fact, the carry chain propagation delay is the determining factor in most microprocessor speeds.

Table 3: Delays for the outputs of a 4-bit ripple carry adder normalized to an inverter delay.

	Signal
	Delay

	,
	6, 7

	,
	10, 11

	,
	14, 15

	,
	18, 19

Carry lookahead adder (CLA)
The carry lookahead adder (CLA) solves the carry delay problem by calculating the carry signals in advance, based on the input signals. It is based on the fact that a carry signal will be generated in two cases: (1) when both bits and are 1, or (2) when one of the two bits is and the carry-in is . Thus, one can write,

(3)
(4)

The above two equations can be written in terms of two new signals	and	, which are shown in Figure 4:

 (
P
i
G
i

)ai
bi	si

ci+1

Figure 4: Full adder at stage with	and	shown.

andare called the carry generate and carry propagate terms, respectively. Notice that the generate and propagate terms only depend on the input bits and thus will be valid after one and

two gate delay, respectively. If one uses the above expression to calculate the carry signals, one does not need to wait for the carry to ripple through all the previous stages to find its proper value. Let’s apply this to a -bit adder to make it clear.
Puttingin Equation 5, we get

Notice that the carry-out bit, , of the last stage will be available after four delays: two gate de- lays to calculate the propagate signals and two delays as a result of the gates required to implement Equation 13.
Figure 5 shows that a 4-bit CLA is built using gates to generate the and signals and a logic block to generate the carry out signals according to Equations 10–13.

 (
c
4
c
0
P
3
P
2
P
1
P
0
c
0
c
1
c
2
c
3
G
0
P
0
G
1
P
1
G
2
P
2
G
3
P
3
)a3	b3

a2	b2

a1	b1

a0	b0

s3	s2	s1	s0

Figure 5: 4-Bit carry lookahead adder implementation detail.

The disadvantage of CLA is that the carry logic block gets very complicated for more than -bits. For that reason, CLAs are usually implemented as 4-bit modules and are used in a hierarchical structure to realize adders that have multiples of -bits.

3 Pre-Lab Report

For your prelab report, you are required to do the following.

1. Estimate the gate delays associated with the output signals for the 1-bit full adder.
2. Estimate the gate delays associated with the output signals for the 4-bit CLA.
3. Using a 4-bit CLA adder as a building block, draw a block diagram to show how to construct a 16-bit CLA adder.

4 Project Requirements

In this project you are required to design, model, and simulate a carry ripple adder and a carry lookahead adder.

Ripple carry adder requirements
1. Write VHDL behavioral models for OR, AND, and XOR gates.
2. The delays of the OR, AND, and XOR gates should be assigned with the help of Table 2 and assuming the delay of an inverter is 1 ns.
3. Model a 1-bit full adder using structural description using the OR, AND, and XOR gates as compoenents.
4. Model a 4-bit adder in a separate file using VHDL structural description. The 4-bit adder will use 1-bit full adders as components.
5. Model a 16-bit adder in a separate file using the VHDL structural description. The 16-bit adder will use 4-bit ripple carry adders as components.
6. The 16-bit adder has two inputs and of type bit vector representing the addend and augend; and 1-bit input signal of type bit representing the carry in. The adder produces one output signal of type bit vector representing the sum word and a 1-bit output signal	of type bit representing the carry out.
7. Write a testbench to verify the operation of the 16-bit adder. The testbench should try differ- ent number values. Simulate the behavior of the adders using the testbench you developed.
Carry lookahead adder requirements
8. Write a VHDL code for a 4-bit CLA should be defined using structural description with components defined in Figure 5.
9. The delays of the 4-bit CLA should be assigned with the help of Table 2 and assuming the delay of an inverter is 1 ns.
10. Model a 16-bit adder in a separate file using VHDL structural description. The 16-bit adder will use 4-bit CLA’s as components.
11. The 16-bit adder has two inputs and representing the addend and augend; and 1-bit input signal representing the carry in. The adder produces one output signal representing the sum word and a 1-bit output signal	representing the carry out.
12. Write a testbench to verify the operation of the 16-bit CLA. The testbench should try differ- ent number values. Simulate the behavior of the adder using the testbench you developed.

5 Lab Report

Your lab report should include the following.

Ripple carry adder
1. Refer to the lab report grading scheme for items that must be present in your lab report.
2. Find the delay of the ripple carry adder using the waveform you got from the simulation.
3. Using the data of Table 2 estimate the area required for the 4-bit ripple carry adder in Figure 3.
4. Estimate the area of a 16-bit carry ripple adder.

Carry lookahead adder
1. Refer to the lab report grading scheme for items that must be present in your lab report.
2. Using the data of Table 2 estimate the area required the 4-bit CLA in Figure 5 and for a 16-bit CLA.
3. Find the delay of the adder using the waveform you got from the simulation.
4. Compare the delay of the ripple carry adder with the delay of the CLA based on the wave- forms you obtained and comment on the result
5. Compare the area of the ripple carry adder with the area of the CLA based on the waveforms you obtained and comment on the result.
6. Provide a plot showing the theoretical area and delay complexity of -bit carry ripple adders and an -bitCLA for values of
6
LAB NO 3(b) Assembly language program for adding to two arrays

Problem Statement
Write a program in 8086 microprocessor to find out the sum of two arrays of 8-bit n numbers, where size “n” is stored at offset 500 and the numbers of first array are stored from offset 501 and the numbers of second array are stored from offset 601 and store the result numbers into first array i.e offset 501.
Algorithm
1. Store 500 to SI and 601 to DI and Load data from offset 500 to register CL and set register CH to 00 (for count).
2. Increase the value of SI by 1.
3. Load first number (value) from next offset (i.e 501) to register AL.
4. Add the value in register AL by value at offset DI.
5. Store the result (value of register AL) to memory offset SI.
6. Increase the value of SI by 1.
7. Increase the value of DI by 1.
8. Loop above 5 till register CX gets 0.
Program
	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	400
	MOV SI, 500
	SI←500

	403
	MOV CL, [SI]
	CL←[SI]

	405
	MOV CH, 00
	CH←00

	407
	INC SI
	SI←SI+1

	408
	MOV DI, 601
	DI←601

	40B
	MOV AL, [SI]
	AL←[SI]

	40D
	ADD AL, [DI]
	AL=AL+[DI]

	40F
	MOV [SI], AL
	AL->[SI]

	411
	INC SI
	SI←SI+1

	412
	INC DI
	DI←DI+1

	413
	LOOP 40B
	JUMP TO 40B IF CX!=0 and CX=CX-1

	415
	HLT
	End

Explanation
1. MOV SI, 500: set the value of SI to 500
2. MOV CL, [SI]: load data from offset SI to register CL
3. MOV CH, 00: set value of register CH to 00
4. INC SI: increase value of SI by 1.
5. MOV DI, 600: set the value of DI to 600.
6. MOV AL, [SI]: load value from offset SI to register AL
7. ADD AL, [DI]: Add value of register AL by content at offset DI.
8. MOV [SI], AL: store value of register AL at offset SI.
9. INC SI: increase value of SI by 1.
10. INC DI: increase value of DI by 1.
11. LOOP 408: jump to address 408 if CX not 0 and CX=CX-1.
12. HLT: stop

 LAB NO 4(a) Combinational multipliers

 Binary Multiplication

1 0 1 0 1 0

x	1 0 1 1

 (
1
0
1

0
1
0
1

0
1
0

1
0
0
0
0
0
0

0
+
1

0

1

0

1

0
1

1
1
0
0
1

1

1

0
)AND operation Partial Products

Multipliers
8x8 multiplier

[image:]

The Array Multiplier

[image:][image:][image:]

X3	X2

Z0
X1	X0	Y1

 (
HA
)	 (
FA
)	 (
FA
)	 (
HA
)

X3	X2	X1

X0	Y2	Z1

 (
HA
)FA	FA	FA

X3	X2	X1

X0	Y3	Z2

FA	FA	FA	HA

Z7	Z6	Z5	Z4	Z3

Carry-Save Multiplier

 (
HA
HA
HA
HA
HA
FA
FA
FA
HA
FA
FA
FA
HA
FA
FA
HA
)
Vector Merging Adder

[image:]Full-Adder Array

Number of FAs and HAs? The length of longest path?

Faster Carry Chain
[image:]
Number of FAs and HAs? The length of longest path?

4(b) Assembly language program to separate even and odd numbers from an array
Problem: Write an assembly language program in 8085 microprocessor to separate odd and even numbers from the given list of 50 numbers. Store odd nos in another list starting from memory location 2100H. Store even nos in another list starting from memory location 2200H. Starting address of the list is 2000H.
Explanation:
A number is said to be odd if its least significant bit is 1 otherwise it is even. Therefore to identify whether the number is even or odd, we perform AND operation with 01 by the help of ANI instruction. If the number is odd then we will get 01 otherwise 00 in the accumulator. ANI instruction also affects the flags of 8085. Therefore if accumulator contains 00 then zero flag gets set otherwise it gets reset.
Example:

[image: Lightbox]

Algorithm:
1. Load the memory location 2000 in HL register pair.
2. Load the memory location 2100 in DE register pair for storing odd numbers.
3. Store the number of elements in register C.
4. Move the next number in the list to accumulator.
5. Perform AND operation with 01H to check whether the number is even or odd.
6. If even, jump to step 9.
7. Get the number in accumulator and store in the memory location pointed by DE.
8. Increment DE.
9. Increment HL. Decrement C.

10. If C is not zero, jump to step 4

Program:
	Memory Location
	Mneumonics
	Comments

	2000H
	LXI H, 2000H
	Initialize memory pointer 1

	2003H
	LXI D, 2100H
	Initialize memory pointer 2

	2006H
	MVI C, 32H
	Initialize counter

	2008H
	MOV A, M
	Get the number

	2009H
	ANI 0lH
	Check for odd number

	200BH
	JZ 2011H
	If EVEN, don’t store

	200EH
	MOV A, M
	Get the number

	200FH
	STAX D
	Store the number in result list

	2010H
	INX D
	Increment pointer 2

	2011H
	INX H
	Increment pointer l

	2012H
	DCR C
	Decrement counter

	2013H
	JNZ 2008H
	If not zero, repeat

	2016H
	LXI H, 2000H
	Initialize memory pointer l

	2019H
	LXI D, 2200H
	Initialize memory pointer2

	201CH
	MVI C, 32H
	Initialize counter

	201EH
	MOV A, M
	Get the number

	201FH
	ANI 0lH
	Check for even number

	2021H
	JNZ 2027H
	If ODD, don’t store

	2024H
	MOV A, M
	Get the number

	2025H
	STAX D
	Store the number in result list

	2026H
	INX D
	Increment pointer 2

	2027H
	INX H
	Increment pointer l

	2028H
	DCR C
	 Decrement counter

	
2029H
	JNZ 201EH
	If not zero, repeat

	202CH
	HLT
	Stop

Lab no 5(a) Booths multiplier
Booth's Multiplication Algorithm
The booth algorithm is a multiplication algorithm that allows us to multiply the two signed binary integers in 2's complement, respectively. It is also used to speed up the performance of the multiplication process. It is very efficient too. It works on the string bits 0's in the multiplier that requires no additional bit only shift the right-most string bits and a string of 1's in a multiplier bit weight 2k to weight 2m that can be considered as 2k+ 1 - 2m.
Following is the pictorial representation of the Booth's Algorithm:
[image: Booth's Multiplication Algorithm]
In the above flowchart, initially, AC and Qn + 1 bits are set to 0, and the SC is a sequence counter that represents the total bits set n, which is equal to the number of bits in the multiplier. There are BR that represent the multiplicand bits, and QR represents the multiplier bits. After that, we encountered two bits of the multiplier as Qn and Qn + 1, where Qn represents the last bit of QR, and Qn + 1 represents the incremented bit of Qn by 1. Suppose two bits of the multiplier is equal to 10; it means that we have to subtract the multiplier from the partial product in the

accumulator AC and then perform the arithmetic shift operation (ashr). If the two of the multipliers equal to 01, it means we need to perform the addition of the multiplicand to the partial product in accumulator AC and then perform the arithmetic shift operation (ashr), including Qn + 1. The arithmetic shift operation is used in Booth's algorithm to shift AC and QR bits to the right by one and remains the sign bit in AC unchanged. And the sequence counter is continuously decremented till the computational loop is repeated, equal to the number of bits (n).
Working on the Booth Algorithm
1. Set the Multiplicand and Multiplier binary bits as M and Q, respectively.
2. Initially, we set the AC and Qn + 1 registers value to 0.
3. SC represents the number of Multiplier bits (Q), and it is a sequence counter that is continuously decremented till equal to the number of bits (n) or reached to 0.
4. A Qn represents the last bit of the Q, and the Qn+1 shows the incremented bit of Qn by 1.
5. On each cycle of the booth algorithm, Qn and Qn + 1 bits will be checked on the following parameters as follows:
i. When two bits Qn and Qn + 1 are 00 or 11, we simply perform the arithmetic shift right operation (ashr) to the partial product AC. And the bits of Qn and Qn + 1 is incremented by 1 bit.
ii. If the bits of Qn and Qn + 1 is shows to 01, the multiplicand bits (M) will be added to the AC (Accumulator register). After that, we perform the right shift operation to the AC and QR bits by 1.
iii. If the bits of Qn and Qn + 1 is shows to 10, the multiplicand bits (M) will be subtracted from the AC (Accumulator register). After that, we perform the right shift operation to the AC and QR bits by 1.
6. The operation continuously works till we reached n - 1 bit in the booth algorithm.
7. Results of the Multiplication binary bits will be stored in the AC and QR registers.
There are two methods used in Booth's Algorithm:
1. RSC (Right Shift Circular)
It shifts the right-most bit of the binary number, and then it is added to the beginning of the binary bits.
[image: Booth's Multiplication Algorithm]
2. RSA (Right Shift Arithmetic)
It adds the two binary bits and then shift the result to the right by 1-bit position.
Example: 0100 + 0110 => 1010, after adding the binary number shift each bit by 1 to the right and put the first bit of resultant to the beginning of the new bit.

Example: Multiply the two numbers 7 and 3 by using the Booth's multiplication algorithm.
Ans. Here we have two numbers, 7 and 3. First of all, we need to convert 7 and 3 into binary numbers like 7 = (0111) and 3 = (0011). Now set 7 (in binary 0111) as multiplicand (M) and 3 (in binary 0011) as a multiplier (Q). And SC (Sequence Count) represents the number of bits, and here we have 4 bits, so set the SC = 4. Also, it shows the number of iteration cycles of the booth's algorithms and then cycles run SC = SC - 1 time.
	Qn
	Qn + 1
	M = (0111)
M' + 1 = (1001) & Operation
	AC
	 Q
	Qn + 1
	SC

	1
	0
	Initial
	0000
	 0011
	0
	4

	
	
	Subtract (M' + 1)
	1001
	
	
	

	
	
	
	1001
	
	
	

	
	
	Perform Arithmetic Right Shift operations (ashr)
	1100
	 1001
	1
	3

	1
	1
	Perform Arithmetic Right Shift operations (ashr)
	1110
	 0100
	1
	2

	0
	1
	Addition (A + M)
	0111
	
	
	

	
	
	
	0101
	 0100
	
	

	
	
	Perform Arithmetic right shift operation
	0010
	 1010
	0
	1

	0
	0
	Perform Arithmetic right shift operation
	0001
	 0101
	0
	0

The numerical example of the Booth's Multiplication Algorithm is 7 x 3 = 21 and the binary representation of 21 is 10101. Here, we get the resultant in binary 00010101. Now we convert it into decimal, as (000010101)10 = 2*4 + 2*3 + 2*2 + 2*1 + 2*0 => 21.
Lab no 5(b): Assembly language program to find prime numbers between a given range

PROGRAM :

	ADDRESS
	LABEL
	MNEMONICS
	DESCRIPTION

	1000
	
	MOV BX,0002
	MOVE 0002 INTO BX

	1004
	
	MOV MOV AX,[1300]
	MOVE THE CONTENT OF 1300 TO AX

	1008
	
	MOV DX,0001
	MOVE 0001 INTO DX

	100C
	
	CMP AX,0002
	COMPARE AX WITH 2

	1010
	
	JZ L2
	JUMP TO L2 IF ZERO

	1012
	L1
	MOV DX,0000
	INITIALIZE DX WITH ZERO

	1016
	
	DIV BX
	DIVIDE AX WITH BX

	1018
	
	CMP DX,0000
	COMPARE DX WITH 0000

	101C
	
	JZ L3
	JUMP TO L3 IF ZERO

	101E
	
	MOV AX,[1300]
	MOVE CONTENT OF 1300 TO AX

	1022
	
	INC BX
	INCREMENT BX

	1023
	
	CMP AX,BX
	COMPARE AX WITH BX

	1025
	
	JNZ L1
	JUMP TO L1 IF NOT ZERO

	1027
	L2
	MOV [1302],0001
	MOVE 0001 TO 1302

	102C
	L3
	MOV [1302],DX
	MOVE DX TO 1302

	1030
	
	HLT
	STOP

INPUT OUTPUT

[1300] : 0004 [1302] : 0000
[1300] : 0005 [1302] : 0001

RESULT

8086 PROGRAM TO CHECK WHETHER A GIVEN NUMBER IS PRIME OR NOT HAS BEEN EXECUTED SUCCESSFULLY AND OUTPUT IS VERIFIED.

Lab no 6(a): Wallace tree adder
Design of Wallace Tree Adders :
There are many cases where it is desired to add more than two numbers together. The straightforward way of adding together m numbers (all n bits wide) is to add the first two, then add that sum to the next using cascading full adders. This requires a total of m − 1 additions, for a total gate delay of O(m lg n) (assuming lookahead carry adders). Instead, a tree of adders can be formed, taking only O(lg m · lg n) gate delays.
A Wallace tree adder adds together n bits to produce a sum of log2n bits.
The design of a Wallace tree adder to add seven bits (W7) is illustrated below:
[image: 7-bit Wallace tree Adder]
An adder tree to add three 4-bit numbers is shown below:
[image: Adder tree to add three 4-bit numbers]
An adder tree (interconnections incomplete) to add five 4-bit numbers is shown below:
[image: Adder tree to add five 4-bit numbers]
--->
The above block diagrams can be used to design different wallace tree adder.

Lab no 6(b): Assembly language program to find factoroial of the given number
Problem – Write an assembly language program for calculating the factorial of a number using 8086 microprocessor
Examples –
Input : 04H
Output : 18H
as In Decimal : 4*3*2*1 = 24
 In Hexadecimal : 24 = 18H

Input : 06H
Output : 02D0H
as In Decimal : 6*5*4*3*2*1 = 720
 In Hexadecimal : 720 = 02D0H
Assumptions –
Starting address of program: 0400
Input memory location: 0500
Output memory location: 0600 and 0601
Important –
If the Given Number is a 16-bit number, the AX register is automatically used as the second parameter and the product is stored in the DX:AX register pair. This means that the DX register holds the high part and the AX register holds the low part of a 32-bit number.
[image: Lightbox]

In 8086 microprocessor, user have direct instruction (MUL) to multiply two numbers, so we don’t have to add Multiplicand by Multiplier times like in 8085.

Program:
 ADRESS MEMONICS COMMENTS
	0400
	MOV CX, [0500]
	CX <- [0500]

	0404
	MOV AX, 0001
	AX <- 0001

	0407
	MOV DX, 0000
	DX <- 0000

	040A
	MUL CX
	DX:AX <- AX * CX

	040C
	LOOP 040A
	Go To [040A] till CX->00

	0410
	MOV [0600], AX
	[0600]<-AX

	0414
	MOV [0601], DX
	[0601]<-DX

	0418
	HLT
	Stop Execution

Explanation –
1. MOV CX, [0500] loads 0500 Memory location content to CX Register
2. MOV AX, 0001 loads AX register with 0001
3. MOV DX, 0000 loads DX register with 0000
4. MUL CX multiply AX with CX and store result in DX:AX pair
5. LOOP 040A runs loop till CX not equal to Zero
6. MOV [0600], AX store AX register content to memory location 0600
7. MOV [0601], DX store DX register content to memory location 0601
8. HLT stops the execution of program

Lab No: 7(a) Arithmetic logic unit
The Arithmetic Logic Unit (ALU) is the heart of any CPU. An ALU performs three kinds of operations, i.e.
· Arithmetic operations such as Addition/Subtraction,
· Logical operations such as AND, OR, etc. and
· Data movement operations such as Load and Store
ALU derives its name because it performs arithmetic and logical operations. A simple ALU design is constructed with Combinational circuits. ALUs that perform multiplication and division are designed around the circuits developed for these operations while implementing the desired algorithm. More complex ALUs are designed for executing Floating point, Decimal operations and other complex numerical operations. These are called Coprocessors and work in tandem with the main processor.
The design specifications of ALU are derived from the Instruction Set Architecture. The ALU must have the capability to execute the instructions of ISA. An instruction execution in a CPU is achieved by the movement of data/datum associated with the instruction. This movement of data is facilitated by the Datapath. For example, a LOAD instruction brings data from memory location and writes onto a GPR. The navigation of data over datapath enables the execution of LOAD instruction. We discuss Datapath more in details in the next chapter on Control Unit Design. The trade-off in ALU design is necessitated by the factors like Speed of execution, hardware cost, the width of the ALU.
Combinational ALU
A primitive ALU supporting three functions AND, OR and ADD is explained in figure 11.1. The ALU has two inputs A and B. These inputs are fed to AND gate, OR Gate and Full ADDER. The Full Adder also has CARRY IN as an input. The combinational logic output of A and B is statically available at the output of AND, OR and Full Adder. The desired output is chosen by the Select function, which in turn is decoded from the instruction under execution. Multiplexer passes one of the inputs as output based on this select function. Select Function essentially reflects the operation to be carried out on the operands A and B. Thus A and B, A or B and A+B functions are supported by this ALU. When ALU is to be extended for more bits the logic is duplicated for as many bits and necessary cascading is done. The AND and OR logic are part of the logical unit while the adder is part of the arithmetic unit.
[image: A Primitive ALU supporting AND, OR and ADD function]Figure 11.1 A Primitive ALU supporting AND, OR and ADD function
The simplest ALU has more functions that are essential to support the ISA of the CPU. Therefore the ALU combines the functions of 2's complement, Adder, Subtractor, as part of the arithmetic unit. The logical unit would generate logical functions of the form f(x,y) like AND, OR, NOT, XOR etc. Such a combination supplements most of a CPU's fixed point data processing instructions.
[image: ALU Symbol]

 Figure 11.2 ALU Symbol

So far what we have seen is a primitive ALU. ALU can be as complex as the variety of functions that are carried out by the ALU. The powerful modern CPUs have powerful and versatile ALUs. Modern CPUs have multiple ALU to improve efficiency.

Lab no 7(b): Assembly language program to find LCM
PROGRAM:
.MODEL SMALL
.DATA
.CODE
AGAIN
:
VALUE DW 0005H, 000FH ; INITIALIZE DATA MEMORY LOCATIONS FOR THE
OPERANDS LCM DW 2 DUP (?) ; AND THE CALCULATED RESULT
MOV AX, @DATA ; INITIALIZE DATA SEGMENT
MOV DS, AX
MOV DX, 0000H ; CLEAR DX REGISTER
MOV AX, VALUE ; LOAD THE FIRST NUMBER
MOV BX, VALUE+2 ; LOAD THE SECOND
NUMBER
PUSH AX ; SAVE BOTH THE NUMBER ON TOP OF THE STACK
PUSH DX
DIV BX ; DIVIDE FIRST NUMBER BY THE SECOND
CMP DX, 0000H ; IS THERE A NUMBER?
JE EXIT ; NO, TERMINATE THE PROGRAM
POP DX ; YES, POP THE DATA STORED
POP AX
ADD AX, VALUE ; ADD THE FIRST NUMBER TO THE CONTENTS OF AX
JNC NOINCDX ; IF THE RESULT IS GREATER THAN 16-BITS INCREMENT
; DX REGISTER
INC DX
NOINCDX:
JMP AGAIN ; REPEAT TILL THE REMAINDER IS ZERO
EXIT:
POP LCM+2 ; POP THE LCM VALUE FROM THE TOP OF THE STACK
POP LCM
MOV AH, 4CH
INT 21H
END ; END PROGRAM
OUTPUT:
BEFORE EXECUTION
0 1 2 3 4 5 6 7 8 9 A B C D E F
DS:0000 05 00 0F 00 00 00 00 00 00 00 00 00 00 00 00 00
DS:0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DS:0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DS:0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DS:0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
AFTER EXECUTION
0 1 2 3 4 5 6 7 8 9 A B C D E F
DS:0000 05 00 0F 00 0F 00 00 00 00 00 00 00 00 00 00 00
DS:0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DS:0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DS:0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DS:0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
RESULT: PROGRAM IS EXECUTED WITHOUT ERRORS AND THE OUTPUT IS VERIFIED
VERIFICATION AND VALIDATION: OUTPUT IS VERIFIED AND IS FOUND CORRECT
CONCLUSION: THE LCM OF TWO GIVEN NUMBERS IS FOUND AND OUTPUT IS VERIFIED

LAB NO 8(a): verification of registers and counters

Design of Registers and Counters :
In a sequential circuit the present output is determined by both the present input and the past output. In order to receive the past output some kind of memory element can be used. The memory element commonly used in the sequential circuits are time-delay devices. The block diagram of the sequential circuit-
 [image: https://cse.iitkgp.ac.in/~chitta/coldvl/images/seq.gif]
A circuit with flip-flops is considered a sequential circuit even in the absence of combinational logic. Circuits that include flip-flops are usually classified by the function they perform. Two such circuits are registers and counters:
1. Register is a group of flip-flops. Its basic function is to hold information within a digital system so as to make it available to the logic units during the computing process.
2. Counter is essentially a register that goes through a predetermined sequence of states.
There are various different kind of Flip-Flops. Some of the common flip-flops are: R-S Flip-Flop, D Flip-Flop, J-K Flip-Flop, T Flip-Flop. The block diagram of different flip-flops are shown here -
[image: https://cse.iitkgp.ac.in/~chitta/coldvl/images/ff.gif]

 RS flipflop If R is high then reset state occurs and when S=1 set state.the both cannot be high simultaneouly. this input combination is avoided.
 JK flipflop If J and K are both low then no change occurs. If J and K are both high at the clock edge then the output will toggle from one state to the other.
[image: https://cse.iitkgp.ac.in/~chitta/coldvl/images/jk3.gif]
 D flipflop The D flip-flop tracks the input, making transitions with match those of the input D. It is used as data store.
 Tflipflop The T or "toggle" flip-flop changes its output on each clock edge.

LAB NO 8(b): Assembly language program to find GCD.
PROGRAM:
.MODEL SMALL
.DATA
.CODE
AGAIN:
BACK:
EXCH:
EXIT:
NUM1 DW 0005H ; INITIALIZE DATA
NUM2 DW 000FH
GCD DW (?) ; INITIALIZE MEMORY FOR THE RESULT
MOV AX, @DATA ; INITIALIZE DATA SEGMENT
MOV DS, AX
MOV AX, NUM1 ; LOAD THE FIRST NUMBER
MOV BX, NUM2 ; LOAD THE SECOND NUMBER
CMP AX, BX ; ARE THEY EQUAL?
JE EXIT ; YES, SAVE THE GCD
JB EXCH ; NO, IS AX<BX? ELSE YES, EXCHANGE THE NUMBERS
MOV DX, 0000H
DIV BX ; CHECK WHETHER AX IS DIVISIBLE BY BX
CMP DX, 0000H ; IS THERE A NUMBER?
JE EXIT ; YES, SAVE GCD
MOV AX, DX ; MOVE THE REMAINDER AS NUM1 DATA
JMP AGAIN ; REPEAT THE PROCEDURE TILL THERE IS NO REMAINDER
XCHG AX, BX ; LOAD HIGHER NUMBER IN AX AND
JMP BACK ; LOWER NUMBER IN DX AND CONTINUE
MOV GCD, BX ; SAVE THE GCD
NUMBER MOV AH, 4CH
INT 21H
END ; END PROGRAM
===
OUTPUT:
BEFORE EXECUTION
================
0 1 2 3 4 5 6 7 8 9 A B C D E F
DS:0000 93 EB EF 89 1E 10 00 B4 4C CD 21 00 05 00 0F 00
DS:0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DS:0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DS:0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DS:0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
AFTER EXECUTION
===============
0 1 2 3 4 5 6 7 8 9 A B C D E F
DS:0000 93 EB EF 89 1E 10 00 B4 4C CD 21 00 05 00 0F 00
DS:0010 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DS:0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DS:0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DS:0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

RESULT: PROGRAM IS EXECUTED WITHOUT ERRORS AND THE OUTPUT IS VERIFIED
VERIFICATION AND VALIDATION: OUTPUT IS VERIFIED AND IS FOUND CORRECT
CONCLUSION: THE GCD OF TWO GIVEN NUMBERS IS FOUND AND OUTPUT IS VERIFIED

LAB NO 9(a): memory design

Design of Memory :
A memory unit is a collection of storage cells together with associated circuits needed to transform insformation in and out of the device. Memory cells which can be accessed for information transfer to or from any desired random location is called random access memory(RAM). The block diagram of a memory unit-
[image: http://vlabs.iitkgp.ac.in/coa/images/memory.png]
Internal Construction: The internal construction of a random-access memory of m words with n bits per word consists of m*n binary storage cells and associated decoding circuits for selecting individual words. The binary cell is the basic building block of a memory unit.
RAM Design:

Design of a RAM cell :
The binary cell has three inputs and one output. The select input enables the cell for reading or writing and the reda/write input determines the cell operation when it is selected. A 1 in the read/write input provides the read operation by forming a path from the flip-flop to the output terminal. A 0 in the read/write input provides the write operation by forming a path from the input terminal to the flip-flop. the logic diagram is-
[image: http://vlabs.iitkgp.ac.in/coa/images/ramcell.png]

Design of a 4X4 RAM :
The logical construction of a small RAM 4X3 is shown below. It consists of 4 words of 3 bits each and has a total of 12 binary cells. Each block labeled BC represents the binary cell with its 3 inputs and 1 output. The block diagram of a binary cell-
[image: http://vlabs.iitkgp.ac.in/coa/images/ram3.png]
A memory with 4 words needs two address lines. The two address inputs go through a 2*4 decoder to select one of the four words. The decoder is enabled with the memory enable input. When the memory enable is 0, all outputs of the decoder are 0 and none of the memory words are selected. With the memory enable at 1, one of the four words is selected, dictated by the value in the two address lines. Once a word has been selected, the read/write input determines the operation. the logic diagram is-
[image: http://vlabs.iitkgp.ac.in/coa/images/4_3RAM.png]
Design Issues :
A basic RAM cell has been provided here as a component which can be used to design larger memory units. An IC memory consisting of 4 words each having 3 bits has been aslo provided.

LAB NO: 9(b) Assembly language program to search an element using linear search
Problem – Write an assembly language program in 8085 microprocessor to find a given number in the list of 10 numbers, if found store 1 in output else store 0 in output.
Example –
[image: Lightbox]
Assumption – Data to be found at 2040H, list of numbers from 2050H to 2059H and output at 2060H
Algorithm –
1. Load data byte to be searched in B register and counter in D register.
2. Load starting element in Accumulator.
3. Compare Accumulator and B register.
4. If zero flag is set then JUMP to point 8 (as CMP instruction sets Zero flag when both are equal).
5. Decrement D register
6. If D>0 take next element in Accumulator and go to point 3.
7. If D=0, this means element not found then store 00H. End the program.
8. Store 01H as element found. End the program.
Program –
	Address
	Label
	Instruction
	Comment

	2000H
	Data
	LXI H, 2040H
	Load address of data to be searched

	2003H
	
	MOV B, M
	Store data to be searched in B register

	2004H
	
	LXI H, 2050H
	Load starting address of list

	2007H
	
	MVI D, 0AH
	Counter for 10 elements

	2009H
	NEXT
	MOV A, M
	Retrieve list element in Accumulator

	200AH
	
	CMP B
	Compare element with data byte

	200BH
	
	JZ STOP
	Jump if data byte found

	200EH
	
	INX H
	Next element of list

	200FH
	
	DCR D
	Decrement counter

	2010H
	
	JNZ NEXT
	Jump to NEXT if D>0

	2013H
	
	LXI H, 2060H
	Load address of output

	2016H
	
	MVI M, 00H
	Store 00H

	2018H
	
	HLT
	Halt

	2019H
	STOP
	LXI H, 2060H
	Load address of output

	201CH
	
	MVI M, 01H
	Store 01H

	201EH
	
	HLT
	Halt

Explanation –
1. One by one all elements are compared with data byte in B register
2. If element found, loop ends and 01H is stored
3. Loop executes 10 number of times
4. If at the end of 10 iterations, data byte is not found then 00H is stored

LAB NO:10(a): Direct mapped cache Design

Design of Direct Mapped cache :
Cache memory is a small (in size) and very fast (zero wait state) memory which sits between the CPU and main memory. The notion of cache memory actually rely on the correlation properties observed in sequences of address references generated by CPU while executing a programm(principle of locality).When a memory request is generated, the request is first presented to the cache memory, and if the cache cannot respond, the request is then presented to main memory.
· Hit: a cache access finds data resident in the cache memory
· Miss: a cache access does not find data resident, so it forces to access the main memory.
Cache treats main memory as a set of blocks.As the cache size is much smaller than main memory so the number of cache lines are very less than the number of main memory blocks. So a procedure is needed for mapping main memory blocks into cache lines.cache mapping scheme affects cost and performance. There are three methods in block placement-
· Direct Mapped Cache
· Fully Associative Mapped Cache
· Set Associative Mapped Cache
Direct Mapped Cache
A given memory block can be mapped into one and only cache line.
Block identification: let the main memory contains n blocks(which require log2(n)) and cache contains m blocks, so n/m different blocks of memory can be mapped (at different times) to a cache block. Each cache block has a tag saying which block of memory is currently present in it, each cache block also contain a valid bit to ensure whether a memory block is in the cache block currently.
· Number of bits in the tag: log2(n/m)
· Number of sets in the Cache: m
· Number of bits to identify the correct set: log2(m)
The memory address is divided into 3 parts- tag(most MSB), index, block offset(most LSB) in order to do the cache mapping.
[image: http://vlabs.iitkgp.ernet.in/coa/images/directmapped1.png]

 Select set using index, block from set using tag.
 Select location from block using block offset.
 tag + index = block address
Diagram of a direct mapped cache (here main memory address is of 32 bits and it gives a data chunk of 32 bits at a time):
[image: http://vlabs.iitkgp.ernet.in/coa/images/directmapped.png]
If a miss occur CPU bring the block from the main memory to the cache, if there is no free block in the corresponding set it replaces a block and put the new one. CPU uses different replacement policies to decide which block is to replace. The disadvantage of the direct mapped cache is that it is easy to build, but suffer the most from thrashing due to the 'conflict misses' giving more miss penalty.
Design issues:
Bellow is a simple cache which holds 1024 words or 4KB, memory address is 32 bits. The tag from the cache is compared against the most significant bits of the address to determine whether the entry in the cache corresponds to the requested address as the cache has 210 or 1024 words and a block size of one word, 10 bits are used to index the cache, leaving 32-10-2=20 bits to be compared against the tag. If the tag and the most significant 20 bits of the address are equal and the valid bit is on then the request hits in the cache otherwise miss occurs. No replacement policy has been implemented in the circuit.
[image: http://vlabs.iitkgp.ernet.in/coa/images/dmc5.png]

The comparator Circuit through which tag is compared with specified bits of address:
[image: http://vlabs.iitkgp.ernet.in/coa/images/dmcomparatorckt.png]

LAB No 10(b): Assembly language program to search an element using binary search

Problem – Write an assembly language program in the 8085 microprocessor to find a given number in the list of 10 numbers. If found store 1 in output, else store 2 in output. Also, store the number of iterations and the index of the element, if found.
Example: Let the list be as follows:
[image: Lightbox]
Assumption –
Assume data to compare it with is stored in 3000H, list of numbers is from 3010H to 3019H and results are stored as follows: number of iterations in 3003H, success/failure (1/2) in 3001H and index in 3002H
Algorithm –
1. Move 0 to Accumulator and store it in 3003H, to indicate number of iterations so far.
2. Move 0 and 9 to L and H registers, respectively.
3. Load the data to search for in Accumulator from 3000H and shift it to B register.
4. Retrieve the number of iterations from 3003H, increase it by one and store back in 3003H.
5. Move value of H register to Accumulator and compare with L register.
6. If carry is generated, binary search is over so JUMP to step 20.
7. Add value of L register to Accumulator and right rotate it.
8. Store value of Accumulator in register C and force reset carry flag, if set.
9. Load the start address of the array in D-E register pair.
10. Add the value of accumulator to Register E and store the result in E.
11. Move 0 to Accumulator and use the ADC command to add any possible carry generated due to previous addition and store it back in Register D.
12. Load the value pointed to by D-E pair and compare with Register B. If carry is generated, JUMP to step 15 and if Zero flag is set, JUMP to step 17.
13. Move value of Register C to Accumulator and decrement Accumulator.
14. Move value of Accumulator to H and JUMP back to step 4.
15. Move value of Register C to Accumulator and increment Accumulator.
16. Move value of Accumulator to L and JUMP back to step 4.
17. Move 1 to Accumulator ad store in 3001H to indicate success.
18. Move value of Register C to Accumulator and store it in 3002H to save the index.
19. JUMP to statement 21.
20. Move 2 to Accumulator and store it in 3001H to indicate failure.
21. End the program.
Program –
	Address
	Label
	Instruction
	Comment

	2000H
	
	LDA 3000H
	Load value to search for

	2003H
	
	MOV B, A
	Save it in register B

	2004H
	
	MVI A, 0
	

	2006H
	
	STA 3003H
	Store iteration number

	2009H
	
	M0V L, A
	

	200AH
	
	MVI A, 9
	

	200CH
	
	MOV H, A
	Storing high and low indices in H-L pair done

	200DH
	start_loop:
	LDA 3003H
	Load iteration number

	2010H
	
	INR A
	Increment iteration number

	2011H
	
	STA 3003H
	Store back in 3003H

	2014H
	
	MOV A, H
	Store high index in Accumulator

	2015H
	
	CMP L
	Compare with lower index

	2016H
	
	JC loop_end
	If carry generated, this means high is less than low so binary search over

	2019H
	
	ADD L
	Add high to low

	202AH
	
	RAR
	Right rotate to divide by two and generate mid

	202BH
	
	MOV C, A
	Save mid in register C

	202CH
	
	JNC reset
	If carry flag unset, go directly to reset.

	202FH
	
	CMC
	Force unset carry flag

	2030H
	reset
	NOP
	

	2031H
	
	LXI D, 3010H
	Load start address in D-E pair

	2034H
	
	ADD E
	Add mid to E to get the offset

	2035H
	
	MOV E, A
	Get the changed address back in E so it becomes a pointer to arr[mid]

	2036H
	
	MVI A, 0
	Handle possible overflow

	2038H
	
	ADC D
	

	2039H
	
	MOV D, A
	Memory index handled

	203AH
	
	LDAX D
	Load the array element in accumulator

	203BH
	
	CMP B
	Compare with value to search

	203CH
	
	JC else_block
	Implies value is greater than value at mid, so we need low=mid+1

	203FH
	
	JZ print
	If zero flag set, match found. Jump to print block

	2042H
	
	MOV A, C
	Neither executed so value<mid and we need high=mid-1

	2043H
	
	DCR A
	mid=mid-1

	2044H
	
	MOV H, A
	h=mid

	2045H
	
	JMP start_loop
	Jump back

	2046H
	else_block
	MOV A, C
	We need low=mid+1

	2047H
	
	INR A
	mid=mid+1

	2048H
	
	MOV A, L
	l=mid

	2049H
	
	JMP start_loop
	

	204CH
	print
	MVI A, 1
	Move 1 to Accumulator

	204EH
	
	STA 3001H
	Store it in 3001H to indicate success

	2051H
	
	MOV A, C
	Move index, that is mid, back to Accumulator

	2052H
	
	STA 3002H
	Store it in 3002H

	2055H
	
	JMP true_end
	Jump to end of the code

	2058H
	loop_end
	MVI A, 2
	

	205AH
	
	STA 3001H
	Store 2 in 3001H to indicate failure

	205DH
	true_end
	HLT
	Terminate

Explanation –
1. We move value of higher and lower index (9 and 0 in this case) to H and L registers respectively in step 2
2. Higher and lower indices are compared in step 5. On getting a carry, which indicates low>high, we jump to end of loop else go to step 6.
3. In steps 7 and 8 we add value of H and L registers and right rotate it, which is equivalent to (high+low)/2 in order to find the index in say C language
4. In step 10, we add the value of mid to start address of array so that it acts as an offset, similar to how *(arr+x) and arr[x] is identical in C.
5. Step 11 ensures no overflow occurs.
6. In step 12, we compare the value at mid index with the value to be searched. If it’s equal, we jump out of the loop and set the values appropriately.
7. If they are not equal, step 12 branches appropriately to let us increment/decrement mid by 1 and move that value to L/H register, as necessary (just like high=mid-1 or low=mid+1 is done in C) and go back to start of loop, that is step 2.
Note – This approach will fail if the element to be searched is smaller than the smallest element in the array. In order to handle that, add an extra zero to the start of the loop and move values 10 and 1 to H-L pair in step 2, respectively.

LAB NO 11(a): Associative cache Design

Design of Associative Cache:
Cache memory is a small (in size) and very fast (zero wait state) memory which sits between the CPU and main memory. The notion of cache memory actually rely on the correlation properties observed in sequences of address references generated by CPU while executing a programm(principle of locality).When a memory request is generated, the request is first presented to the cache memory, and if the cache cannot respond, the request is then presented to main memory.
· Hit: a cache access finds data resident in the cache memory
· Miss: a cache access does not find data resident, so it forces to access the main memory.
Cache treats main memory as a set of blocks.As the cache size is much smaller than main memory so the number of cache lines are very less than the number of main memory blocks. So a procedure is needed for mapping main memory blocks into cache lines.cache mapping scheme affects cost and performance. There are three methods in block placement-
· Direct Mapped Cache
· Fully Associative Mapped Cache
· Set Associative Mapped Cache
Associative Cache
Any main memory block can mapped into any cache line. main memory address is divided into two groups which are tags and word bits. Words are low-order bits and identifies the location of a word within a block and tags are high-order bits which identifies the block.
[image: http://vlabs.iitkgp.ac.in/coa/images/tags.png]
Block diagram of a associated cache :
[image: http://vlabs.iitkgp.ac.in/coa/images/asc.png]
If a miss occur CPU bring the block from the main memory to the cache, if there is no free block in the corresponding set it replaces a block and put the new one. CPU uses different replacement policies to decide which block is to replace. The disadvantage of the associative cache is its high cost for implementing parallel tag comparison, but suffer the most from thrashing due to the 'conflict misses' giving more miss penalty.
Design issues:
No replacement policy has been implemented in the experiment.
The comparator Circuit through which tag is compared with specified bits of address:
[image: http://vlabs.iitkgp.ac.in/coa/images/dmcomparatorckt.png]

LAB NO 11(b): Assembly language program to sort numbers using bubble sort

Problem – Write an assembly language program in 8085 microprocessor to sort a given list of n numbers using Bubble Sort.
Example
[image: Lightbox]

Assumption – Size of list is stored at 2040H and list of numbers from 2041H onwards.
Algorithm –

1. Load size of list in C register and set D register to be 0
2. Decrement C as for n elements n-1 comparisons occur
3. Load the starting element of the list in Accumulator
4. Compare Accumulator and next element
5. If accumulator is less than or equal to the next element jump to step 8
6. Swap the two elements
7. Set D register to 1
8. Decrement C
9. If C>0 take next element in Accumulator and go to point 4
10. If D=0, this means in the iteration, no exchange takes place consequently we know that it won’t take place in further iterations so the loop in exited and program is stopped
11. Jump to step 1 for further iterations

Program –
	Address
	Label
	Instruction
	Comment

	2000H
	START
	LXI H, 2040H
	Load size of array

	2003H
	
	MVI D, 00H
	Clear D register to set up a flag

	2005H
	
	MOV C, M
	Set C register with number of elements in list

	2006H
	
	DCR C
	Decrement C

	2007H
	
	INX H
	Increment memory to access list

	2008H
	CHECK
	MOV A, M
	Retrieve list element in Accumulator

	2009H
	
	INX H
	Increment memory to access next element

	200AH
	
	CMP M
	Compare Accumulator with next element

	200BH
	
	JC NEXTBYTE
	If accumulator is less then jump to NEXTBYTE

	200EH
	
	JZ NEXTBYTE
	If accumulator is equal then jump to NEXTBYTE

	2011H
	
	MOV B, M
	Swap the two elements

	2012H
	
	MOV M, A
	

	2013H
	
	DCX H
	

	2014H
	
	MOV M, B
	

	2015H
	
	INX H
	

	2016H
	
	MVI D, 01H
	If exchange occurs save 01 in D register

	2018H
	NEXTBYTE
	DCR C
	Decrement C for next iteration

	2019H
	
	JNZ CHECK
	Jump to CHECK if C>0

	201CH
	
	MOV A, D
	Transfer contents of D to Accumulator

	201DH
	
	CPI 01H
	Compare accumulator contents with 01H

	201FH
	
	JZ START
	Jump to START if D=01H

	2022H
	
	HLT
	HALT

Explanation-
· Retrieve an element in accumulator.
· Compare it with next element, if it is greater then swap otherwise move to next index.
· If in one entire loop there has been no exchange, halt otherwise start the whole iteration again.
· The following approach has two loops, one nested inside other so-
Worst and Average Case Time Complexity: O(n*n). Worst case occurs when array is reverse sorted.
Best Case Time Complexity: O(n). Best case occurs when array is already sorted.
Bubble sort is a simple sorting algorithm that repeatedly steps through the list to be sorted, compares each adjacent pair of elements, and swaps them if they are in the wrong order. The algorithm gets its name from the way smaller elements “bubble” to the top of the list. Here’s an 8085 assembly language program for bubble sort.

image2.jpeg

image85.png

image86.png

image87.png

image88.png

image89.png

image90.png

image91.png

image92.png

image93.png

image94.png

image3.jpeg

image95.png

image96.png

image97.png

image98.png

image99.png

image100.png

image101.png

image102.png

image103.png

image104.png

image4.jpeg

image105.png

image106.png

image107.png

image108.png

image109.png

image110.png

image111.png

image112.png

image113.png

image114.png

image115.png

image116.png

image117.png

image118.png

image119.png

image120.png

image121.png

image122.png

image123.png

image124.png

image5.jpeg

image125.png

image126.png

image127.png

image128.png

image129.png

image130.png

image131.png

image132.png

image133.png

image134.png

image135.png

image136.png

image137.png

image138.png

image139.png

image140.png

image141.png

image142.png

image143.png

image144.png

image6.png

image145.png

image146.png

image147.png

image148.png

image149.png

image150.png

image151.png

image152.png

image153.png

image154.png

image155.png

image156.png

image157.png

image158.png

image159.png

image160.png

image161.png

image162.png

image163.png

image164.png

image165.png

image166.png

image167.png

image168.png

image169.png

image170.png

image171.png

image172.png

image173.png

image174.png

image7.jpeg

image175.png

image176.png

image177.png

image178.png

image179.png

image180.png

image181.png

image182.png

image183.png

image184.png

image8.jpeg

image185.png

image186.png

image187.png

image188.png

image189.png

image190.png

image191.png

image192.png

image193.png

image194.png

image9.jpeg

image195.png

image196.png

image197.png

image198.png

image199.png

image200.png

image201.png

image202.png

image203.png

image204.png

image10.jpeg

image205.png

image206.png

image207.png

image208.png

image209.png

image210.png

image211.png

image212.png

image213.png

image214.png

image11.jpeg

image215.png

image216.png

image217.png

image218.png

image219.png

image220.png

image221.png

image222.png

image223.png

image224.png

image12.jpeg

image225.png

image226.png

image227.png

image228.png

image229.png

image230.png

image231.png

image232.png

image233.png

image234.png

image13.jpeg

image235.png

image236.png

image237.png

image238.png

image239.png

image240.png

image241.png

image242.png

image243.png

image244.png

image245.png

image246.png

image247.png

image248.png

image249.png

image250.png

image251.png

image252.png

image253.png

image254.png

image255.png

image256.png

image257.png

image258.png

image259.png

image260.png

image261.png

image262.png

image263.png

image264.png

image14.jpeg

image265.png

image266.png

image267.png

image268.png

image269.png

image270.png

image271.png

image272.png

image273.png

image274.png

image15.png

image275.png

image276.png

image277.png

image278.png

image279.png

image280.png

image281.png

image282.png

image283.png

image284.png

image16.png

image285.png

image286.png

image287.png

image288.png

image289.png

image290.png

image291.png

image292.png

image293.png

image294.png

image17.png

image295.png

image296.png

image297.png

image298.png

image299.png

image300.png

image301.png

image302.png

image303.png

image304.png

image18.png

image305.png

image306.png

image307.png

image308.png

image309.png

image310.png

image311.png

image312.png

image313.png

image314.png

image315.png

image316.png

image317.png

image318.png

image319.png

image320.png

image321.png

image322.png

image323.png

image324.png

image19.png

image325.png

image326.png

image327.png

image328.png

image329.png

image330.png

image331.png

image332.png

image333.png

image334.png

image20.png

image335.png

image336.png

image337.png

image338.png

image339.png

image340.png

image341.png

image342.png

image343.png

image344.png

image21.png

image345.png

image346.png

image347.png

image348.png

image349.png

image350.png

image351.png

image352.png

image353.png

image354.png

image22.png

image355.png

image356.png

image357.png

image358.png

image359.png

image360.png

image361.png

image362.png

image363.png

image364.png

image23.png

image365.png

image366.png

image367.png

image368.png

image369.png

image370.png

image371.png

image372.png

image373.png

image374.png

image24.png

image375.png

image376.png

image377.png

image378.png

image379.png

image380.png

image381.png

image382.png

image383.png

image384.png

image25.png

image385.png

image386.png

image387.png

image388.png

image389.png

image390.png

image391.png

image392.png

image393.png

image394.png

image26.png

image395.png

image396.png

image397.png

image398.jpeg

image399.png

image400.png

image401.png

image402.png

image27.png

image403.png

image404.png

image405.png

image406.png

image407.png

image408.png

image409.gif

image410.png

image411.png

image412.png

image28.png

image413.png

image414.jpeg

image415.png

image416.png

image417.png

image418.png

image419.png

image420.png

image421.png

image422.jpeg

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

image67.png

image68.png

image69.png

image70.png

image71.png

image72.png

image73.png

image74.png

image1.jpeg

image75.png

image76.png

image77.png

image78.png

image79.png

image80.png

image81.png

image82.png

image83.png

image84.png

